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This paper is devoted to a clamped sandwich beam with an individual functionally graded
core under a uniformly distributed load. A non-linear shear deformation theory is developed
with consideration of the classical shear stress formula for beams. Two differential equa-
tions of the equilibrium of the beam are obtained based on the principle of stationary total
potential energy. The shear effect function and the relative deflection line of the beam are
determined. Moreover, a numerical FEM model (Ansys system) of this beam is elaborated.
Detailed calculations of exemplary beams are realised using two methods, analytical and
numerical FEM.
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1. Introduction

Shear deformation theories of beams, plates and shells have been extensively refined in the
twenty-first century. The demand for new, more accurate and generalised shear theories becomes
more apparent with increasing interest in the application of composite structures in engineering.
The significance of this topic can be proven by the number of articles and original theories
developed over the last two decades.
Huang (2003) described various studies on stress-strain modelling of adhesively bonded sand-

wich beams and proposed his model of sandwich beams. Reddy (2004) presented a fundamental
theory and analysis associated with the mechanics of laminated composite plates and shells.
Zenkour (2006) modelled a static response for a rectangular plate supported with a functionally
graded plate.
Berdichevsky (2010) derived a two-dimensional theory of sandwich plates by asymptotic

analysis of three-dimensional linear elasticity. Carrera et al. (2011) discussed classical and mod-
ern approaches to the beam theory and paid particular attention to their typical applications.
Meiche et al. (2011) developed an advanced hyperbolic shear deformation theory. Mantari et
al. (2012) presented an original shear deformation theory for sandwich and composite plates,
where the displacement field is parameterized. Thai and Vo (2013) proposed a sinusoidal shear
deformation theory for bending, buckling and vibration of functionally graded plates. Sahoo and
Singh (2013) discussed an original inverse trigonometric zigzag theory and implemented it for
static analysis of laminated composite and sandwich panels.
Kolakowski and Mania (2015) investigated the dynamic interactive response of square FGM

plates subjected to in-plane pulse loading using the modified classical laminate plate theory.
Mahi et al. (2015) introduced a hyperbolic shear deformation theory with five degrees of freedom
applicable to bending and free vibration analysis of isotropic, functionally graded sandwich and
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laminated composite plates. Marczak and Jędrysiak (2015) studied free-vibration of periodic
three-layered sandwich structures referring to Kirchoff’s thin plate theory and the tolerance
averaging technique. Domagalski and Jędrysiak (2016) presented a work on geometrically non-
-linear vibrations of beams with periodic structures.
Banat and Mania (2017) considered non-linear buckling and failure analysis of fibre metal

laminate thin-walled structures under axial compression. Özütok and Madenci (2017) presented a
higher-order shear deformation theory including a non-linear distribution of shear stress through
the thickness of a laminated beam. Pei et al. (2018) established a variationally consistent higher-
-order theory for problems of functionally graded beams, referring to the principle of virtual work.
Birman and Kardomateas (2018) discussed the current development and interest in mathematical
modelling and the application of sandwich structures. Ghayesh (2018) focused on vibrations of
axially functionally graded beams incorporating shear deformation and imperfection.
Kumar et al. (2019) developed a modern higher-order shear deformation theory for a func-

tionally graded plate. Magnucki et al. (2020) referred to the Zhuravsky shear stress formula to
develop a shear deformation theory. Żur et al. (2020) focused on buckling and free-vibration
analyses of functionally graded nanoplates with magneto-electroelastic coupling. Dhuria et al.
(2021) analysed the effect of porosity distribution on the static and buckling response of a simply
supported plate with FGM.
Magnucki (2022) presented analytical models of homogeneous beams with bi-symmetrical

cross sections, sandwich beams and beams with symmetrically varying mechanical properties.
Magnucki et al. (2022) conducted a study on the axisymmetric bending problem of a generalised
circular sandwich plate with varying mechanical properties along its thickness. Jędrysiak (2023)
investigated slender, elastic, nonperiodic beams with a functionally graded structure on the
macro-level and a nonperiodic structure on the micro-level referring to the tolerance modelling
method.
The main objective of the study is to formulate a linear theory with the assumption of a

non-linear shear deformation for a three-layer beam with an individual functionally graded core.
The function of the variation of Young’s modulus is generalised so that it can describe a beam
with homogeneous mechanical properties, as well as a classic three-layer and five-layer beam
with an optional ratio of stiffness between the layers.
According to the literature review, there are numerous papers investigating the problem of

the shear effect in structures. Many of them refer to a numerical approach or analytical formula-
tion with a predefined, usually parametric shear deformation function. In the present paper, the
shear deformation function is obtained analytically in the exact manner with consideration of
the classical shear stress formula. An analytical model of a beam is developed using the proposed
non-linear shear deformation theory. The subject of the study is a clamped sandwich beam of
length L, width b, and total depth h with an individual functionally graded core under a uni-
formly distributed load of intensity q (Fig. 1). The bending problem of this beam is studied,
taking into account the shear effect. Its solution is compared with the results of numerical finite
element method analysis in the Ansys system.

Fig. 1. A scheme of a clamped sandwich beam with an individual functionally graded core
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2. Analytical model of the sandwich beam

The rectangular cross section and variation of Young’s modulus in the depth direction of the
beam are shown in Fig. 2.

Fig. 2. Schemes of the rectangular cross section and variation of Young’s modulus in the depth direction
of the beam

The variation of Young’s modulus in the depth direction takes the form

Ef (η) = Effe(η) (2.1)

where: Ef – Young’s modulus of faces, also fe(η) – dimensionless function, which in successive
layers is as follows:
— the upper face (−1/2 ¬ η ¬ −χc/2)

fe(η) = 1 (2.2)

— the core (−χc/2 ¬ η ¬ χc/2)

fe(η) = ec +
1− ec
2n
[

1 + cos
( 4
χc
πη
)]n

(2.3)

— the lower face (χc/2 ¬ η ¬ 1/2)

fe(η) = 1 (2.4)

and dimensionless quantities: the coordinate η = y/h, coefficient of the core ec, thickness of the
core χc = hc/h, exponent n – natural number. The deformation of a planar cross section after
bending of this beam is presented in Fig. 3. The longitudinal displacements according to this
scheme (Fig. 3) in successive layers are as follows:
— the upper face (−1/2 ¬ η ¬ −χc/2)

u(uf)(x, η) = −h
[

η
dv

dx
− f
(uf)
d (η)ψf (x)

]

(2.5)
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— the core (−χc/2 ¬ η ¬ χc/2)

u(c)(x, η) = −h
[

η
dv

dx
− f
(c)
d (η)ψf (x)

]

(2.6)

— the lower face (χc/2 ¬ η ¬ 1/2)

u(lf)(x, η) = −h
[

η
dv

dx
− f
(lf)
d (η)ψf (x)

]

(2.7)

where: v(x) – deflection, ψf (x) = uf (x)/h – dimensionless longitudinal displacement on the outer

surfaces of the beam-shear effect function, f (uf)d (η), f (c)d (η), f
(lf)
d (η) – dimensionless deformation

functions in these layers.

Fig. 3. Scheme of a planar cross-section deformation of the analysed beam

Consequently, the strains and stresses are as follows:
— the upper face (−1/2 ¬ η ¬ −χc/2)

ε(uf)x (x, η) =
∂u

∂x
= −h

[

η
d2v

dx2
− f
(uf)
d (η)

dψf
dx

]

σ(uf)x (x, η) = −Efh
[

η
d2v

dx2
− f
(uf)
d (η)

dψf
dx

]

γ(uf)xy (x, η) =
dv

dx
+

∂u

h∂η
=
df
(uf)
d

dη
ψf (x)

τ (uf)xy (x, η) =
Ef

2(1 + ν)
df
(uf)
d

dη
ψf (x)

(2.8)
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— the core (−χc/2 ¬ η ¬ χc/2)

ε(c)x (x, η) =
∂u

∂x
= −h

[

η
d2v

dx2
− f
(c)
d (η)

dψf
dx

]

γ(c)xy (x, η) =
dv

dx
+

∂u

h∂η
=
df
(c)
d

dη
ψf (x)

σ(c)x (x, η) = −Efh
[

η
d2v

dx2
− f
(c)
d (η)

dψf
dx

]

f (c)e (η)

τ (c)xy (x, η) =
Ef

2(1 + ν)
f (c)e (η)

df
(c)
d

dη
ψf (x)

(2.9)

— the lower face (χc/2 ¬ η ¬ 1/2)

ε(lf)x (x, η) =
∂u

∂x
= −h

[

η
d2v

dx2
− f
(lf)
d (η)

dψf
dx

]

γ(lf)xy (x, η) =
dv

dx
+

∂u

h∂η
=
df
(lf)
d

dη
ψf (x)

σ(lf)x (x, η) = −Efh
[

η
d2v

dx2
− f
(lf)
d (η)

dψf
dx

]

τ (lf)xy (x, η) =
Ef

2(1 + ν)
df
(lf)
d

dη
ψf (x)

(2.10)

where ν – Poisson’s ratio is constant for the structure. Taking into account the papers by
Magnucki (2022) and Magnucki et al. (2022), the unknown dimensionless deformation functions
f
(uf)
d (η), f (c)d (η), f

(lf)
d (η) are determined with consideration of the classical shear stress formula

for the rectangular cross section of the beam

τ (Cl)xy (x, η) = Qz(η)
T (x)
Jz

h2 (2.11)

where: T (x) – transverse-shear force, Qz(η) – dimensionless first moment of the cross section
area part, Jz – inertia moment of the cross section. Therefore, the dimensionless first moments
of successive layers of this sandwich beam with the individual functionally graded core are of
the form:
— the upper face (−1/2 ¬ η ¬ −χc/2)

Q
(uf)
z (η) =

1
8
(1− 4η2) (2.12)

— the core (−χc/2 ¬ η ¬ χc/2)

Q
(c)
z (η) =

1
8
[1− χ2c + ec(χ

2
c − 4η

2)− 8Jc(η)] (2.13)

where

Jc(η) =
1− ec
2n

η
∫

−χc/2

(

1 + cos
4πη1
χc

)n
η1 dη1 (2.14)

— the lower face (χc/2 ¬ η ¬ 1/2)

Q
(lf)
z (η) =

1
8
(1− 4η2) (2.15)
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Equating the shear stresses in Eqs. (2.8), (2.9) and (2.10) with classical shear stress formula
(2.11) with consideration of the dimensionless first moments in Eqs. (2.12), (2.13) and (2.14),
after simple transformations, the unknown dimensionless deformation functions for successive
layers satisfying the continuity conditions between them are obtained in the following form:
— the upper face (−1/2 ¬ η ¬ −χc/2)

f
(uf)
d (η) = −Cf +

1
24
(3− 4η2)η (2.16)

— the core (−χc/2 ¬ η ¬ χc/2)

f
(c)
d (η) =

∫

Q
(c)
z (η)
fe(η)

dη (2.17)

— the lower face (χc/2 ¬ η ¬ 1/2)

f
(uf)
d (η) = Cf +

1
24
(3− 4η2)η (2.18)

where the dimensionless coefficient

Cf = −
1
48
(3− χ2c)χc +

χc/2
∫

0

Q
(c)
z (η)
fe(η)

dη (2.19)

The graph of dimensionless functions in Eqs. (2.2), (2.3) and (2.4) of the variation of Young’s
modulus and the shape of deformation of the planar cross section of an exemplary beam
(χc = 4/5, ec = 1/30, n = 7), taking into account functions Eqs. (2.16), (2.17) and (2.8),
is shown in Fig. 4.

Fig. 4. The graph of dimensionless functions of Young’s modulus variation and the shape of deformation
of the planar cross section of the exemplary beam
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3. Analytical bending study of the sandwich beam

The elastic strain energy is described as

Ue =
1
2
Efbh

L
∫

0

[

Φ(uf)ε,γ (x) + Φ
(c)
ε,γ(x) + Φ

(lf)
ε,γ (x)

]

dx (3.1)

where

Φ(uf)ε,γ (x) =

−χc/2
∫

−1/2

{

[

ε(uf)x (x, η)
]2 +

1
2(1 + ν)

[

γ(uf)xy (x, η)
]2
}

dη

Φ(c)ε,γ(x) =

χc/2
∫

−χc/2

{

[

ε(c)x (x, η)
]2 +

1
2(1 + ν)

[

γ(c)xy (x, η)
]2
}

fe(η) dη

Φ(lf)ε,γ (x) =

1/2
∫

χc/2

{

[

ε(lf)x (x, η)
]2 +

1
2(1 + ν)

[

γ(lf)xy (x, η)
]2
}

dη

Substituting expressions in Eqs. (2.8)1,3, (2.9)1,2, (2.10)1,2 for strains into Eq. (3.1), after
integration, one obtains

Ue =
1
24
Ef bh

3

L
∫

0

[

Cvv
(d2v

dx2

)2
− 2Cvψ

d2v

dx2
dψf
dx
+Cψψ

(dψf
dx

)2
+ Cψ

ψf (x)2

h2

]

dx (3.2)

where the dimensionless coefficients

Cvv = 1− χ3c + 12Jvv Cvψ = 3(1− χ2c)Cf +
1
40
(4− 5χ3c + χ

5
c) + 12Jvψ

Cψψ =
1
672

{

84[96(1 − χc)Cf + 5− 6χ
2
c + χ

4
c ]Cf

+
1
10
(68− 105χ3c + 42χ

5
c − 5χ

7
c)
}

+ 12Jψψ

Cψ =
1

2(1 + ν)

[ 1
80
(8− 15χc + 10χ3c − 3χ

5
c) + 12Jψ

]

Jvv =

χc/2
∫

−χc/2

η2fe(η) dη Jvψ =

χc/2
∫

−χc/2

ηf
(c)
d (η)fe(η) dη

Jψψ =

χc/2
∫

−χc/2

[f (c)d (η)]
2fe(η) dη Jψ =

χc/2
∫

−χc/2

(df
(c)
d

dη

)2
fe(η) dη

The work of the load is in the form

W =
L
∫

0

qv(x) dx (3.3)

Based on the principle of stationary total potential energy δ(Ue −W ) = 0, the system of two
differential equations of equilibrium of this sandwich beam is obtained in the following form

Cvv
d4v

dx4
− Cvψ

d3ψf
dx3
=

q

Efbh3
Cvψ

d3v

dx3
− Cψψ

d2ψf
dx2
+ Cψ

ψf (x)
h2
= 0 (3.4)
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The fourth-order expression, Eq. (3.4)1, of this system is equivalent to the second-order equation
of the form

Cvv
d2v

dx2
− Cvψ

dψf
dx
= −

Mb(x)
Efbh3

(3.5)

where Mb(x) is the bending moment. Thus, Eqs. (3.5) and (3.4)2 are the governing equations
of the sandwich beam. These two equations, after a simple transformation, are reduced to one
equation in the form

d2ψf
dξ2
− (αλ)2ψf (ξ) = −

Cvψ
CvvCψψ − C

2
vψ

λ2
T (ξ)
Ef bh

(3.6)

where: ξ = x/L – dimensionless coordinate, λ = L/h – relative length of the beam, and

α =

√

CvvCψ
CvvCψψ − C

2
vψ

is a dimensionless coefficient. The end part of this beam with a uniformly distributed load and
reactions is shown in Fig. 5.

Fig. 5. Scheme of the beam end part with the load end reactions

The bending moment and the shear force according to this scheme, in the dimensionless
coordinate ξ, are as follows

Mb(ξ) =
1
2
(ξ − ξ2 − 2M c)qL2 T (ξ) =

1
2
(1− 2ξ)qL (3.7)

where M c = Mc/(qL2) is the unknown dimensionless reactive moment. Therefore, Eq. (3.6),
taking into account the transverse shear force in Eq. (3.7)2, is of the form

d2ψf
dξ2
− (αλ)2ψf (ξ) = −6

Cvψ
CvvCψψ − C

2
vψ

λ3(1− 2ξ2)
q

Ef b
(3.8)

The solution of this equation is as follows

ψf (ξ) = [C1 sinh(αλξ) + C2 cosh(αλξ) + C0(1− 2ξ)]
q

Ef b
(3.9)

where C1, C2 are integration constants, and

C0 = 6
Cvψ
CvvCψ

λ

Taking into account the two conditions: ψf (0) = 0 – clamped end, and ψf (1/2) = 0 – the
symmetry plane of the beam, these constants are as follows C1 = C0/ tanh(αλ/2) and C2 = −C0.
Consequently, the function in Eq. (3.9), that is, the shear effect function is in the following form

ψf (ξ) = ψf (ξ)
q

Ef b
(3.10)
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where

ψf (ξ) = 6
{

1− 2ξ −
sinh[αλ(1 − 2ξ)/2]
sinh(αλ)/2

} Cvψ
CvvCψ

λ (3.11)

Equation (3.5) in the dimensionless coordinate, with consideration of the expressions in Eqs.
(3.7) and (3.10), is as follows

d2v

dξ2
=
[Cvψ
λ3

dψf
dξ
− 6(ξ − ξ2 − 2M c)

] λ3

Cvv

q

Efb
(3.12)

where v(ξ) = v(ξ)/L is the relative deflection of the beam. Integrating this equation and taking
into account the boundary condition dv/dξ

∣

∣

0
= 0 – clamped end, and dv/dξ

∣

∣

1/2
= 0 – symmetry

plane of the beam, one obtains

dv

dξ
=
[Cvψ
λ3

ψf (ξ)− 6
(1
2
ξ2 −
1
3
ξ3 − 2M cξ

)] λ3

Cvv

q

Efb
(3.13)

where: M c = 1/12. Thus, integrating this equation and taking into account the boundary con-
dition v(0) = 0 and the function in Eq. (3.11), one obtains the relative deflection-bending line
of the beam

v(ξ) = v(ξ)
q

Ef b
(3.14)

where

v(ξ) =
[

6fψ(ξ)
C2vψ
CvvCψ

1
λ2
−
1
2
(2ξ − ξ2 − 1)ξ2

] λ3

Cvv

fψ(ξ) = ξ − ξ2 −
cosh(αλ/2) − cosh[(αλ(1 − 2ξ)/2]

αλ sinh(αλ/2)

(3.15)

Consequently, the relative maximum deflection

vmax = v
(1
2

)

= vmax
q

Efb
(3.16)

where the dimensionless maximum deflection

vmax = v
(1
2

)

= (1 + Cse)
λ

32Cvv
(3.17)

and the shear coefficient

Cse = 48
[

1− 4
cosh(αλ/2)
αλ sinh(αλ/2)

] C2vψ
CvvCψ

1
λ2

(3.18)

The shear stresses described by Eqs. (2.8), (2.9) and (2.10), with consideration of Eqs. (2.16),
(2.17) and (2.18), in successive layers, are as follows:
— the upper face (−1/2 ¬ η ¬ −χc/2)

τ (uf)xy (x, η) = τ
(uf)
xy (x, η)

q

b
(3.19)

where, the dimensionless stress

τ (uf)xy (x, η) =
1

2(1 + ν)
Q
(uf)
z ψf (x) (3.20)
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— the core (−χc/2 ¬ η ¬ χc/2)

τ (c)xy (x, η) =
1

2(1 + ν)
Q
(c)
z ψf (x) (3.21)

— the lower face (χc/2 ¬ η ¬ 1/2)

τ (lf)xy (x, η) =
1

2(1 + ν)
Q
(lf)
z ψf (x) (3.22)

Exemplary calculations are carried out for a beam family of the following selected dimen-
sionless sizes and material constants: λ = 30, χc = 4/5, ec = 1/30, ν = 0.3, as well as the
exponent – natural number n = 0, 2, 7, 14, 25,→ ∞. The graphs of the dimensionless functions
given in Eqs. (2.2), (2.3) and (2.4) of Young’s modulus variation and the dimensionless shear
stresses in Eqs. (3.20), (3.21) and (3.22) in the beam cross section for ξ = 0.1, and the exponent
value n = 7,→∞ are shown in Figs. 6a and 6b. The maximum shear stress τmax(ξ) = τ

(c)
xy (ξ, 0)

occurs at the neutral surface (η = 0) in the core.

Fig. 6. The graph of dimensionless functions of Young’s modulus variation and the dimensionless shear
stress: (a) for n = 7 and (b) classical sandwich beam for n→∞

The results of analytical calculations of the dimensionless coefficient Cvv , maximum dimen-
sionless shear stresses, shear coefficient Cse, Eq. (3.18), and dimensionless maximum deflec-
tion vmax, Eq. (3.17), are specified in Table 1.

Table 1. The value of coefficients, shear stresses and maximum deflections – analytical calcula-
tions

n
0 2 7 14 25 ∞

Cvv 1.0 0.73063 0.64218 0.60630 0.58281 0.505067
τmax 18.0000 15.1103 14.3210 14.0761 13.9253 13.5903
Cse 0.01376 0.09186 0.13953 0.15146 0.15996 0.17078
vmax 855.4 1260.9 1497.2 1604.8 1679.4 1955.9

Moreover, the graphs of maximum dimensionless shear stresses τmax and maximum deflec-
tions vmax are shown in Figs. 7a and 7b.
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Fig. 7. The graph of (a) the maximum dimensionless shear stresses τmax and (b) the maximum
dimensionless deflections vmax

4. Numerical FEM bending study of the sandwich beam

The numerical model of the family of selected beams with the same parameters as in the ana-
lytical study is developed in the Ansys 2021 R2 system and is examinef in linear static struc-
tural analysis. The following parameters are applied in the study: Ef = 70GPa, b = 50mm,
h = 50mm, thus L = 1500mm (λ = 1/30).
Due to symmetry of the geometry, load and mechanical parameters, only a quarter of the

beam is considered. The symmetric boundary conditions are applied by restricting the normal
displacements at the selected faces shown in Fig. 8a. The clamped boundary condition is imposed
on the face of the free end of the beam in the following manner. Displacements along the y-axis
are blocked referring to the remote point located in the centre of the coordinate system (v = 0).
In addition, the translations towards the x-axis are restrained globally (u = 0) on the same face.
Such a boundary condition is consistent with analytical study and also allows deformations of
the face at the end of the beam in the y and z directions, which ensures no stress concentration
phenomenon. The force Fy = 1kN is applied to the top of the quarter of the model, which
corresponds to the uniformly distributed load (Fig. 1) of q = 8/3N/mm.

Fig. 8. (a) Geometry and boundary conditions in finite element analysis. (b) Numerical FEM model of
the sandwich beam

The geometry is divided into uniform second-order hexahedral SOLID186 finite elements
with twenty nodes and three degrees of freedom at each node (Fig. 8b). A sufficient number of
finite elements is found through mesh convergence study with the accuracy criterion imposed on
the maximum deflection, shear stress, and elastic strain energy. Such an analysis is carried out
assuming the greatest gradient of Young’s modulus except for n→∞, that is, for n = 25. The
finite element model consists of over 1.3 million nodes and 312 thousand elements, assuming
there are 300, 80 and 13 elements along x, y and z directions (Fig. 8a), respectively. The ratio
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of the number of elements to the model size is highest along the depth of the beam (y-axis) due
to the variable mechanical property towards this direction.
The mechanical properties of the material are coherent with analytical study, i.e. isotropic,

perfectly elastic, where Young’s modulus is described by the function in Eqs. (2.1) and (2.3). At
any point of the geometry, the calculated values of Young’s modulus are mapped to the centres
of hexahedral finite elements. An exemplary distribution of Young’s modulus for n = 2 is shown
in Fig. 9.

Fig. 9. Young’s modulus E distribution for n = 2

The deflections v obtained for this case, i.e. displacements toward the y-axis, are shown in
Fig. 10a. Following the analytical study, the shear stress is studied for ξ = x/L = 0.1. In that
case, the surface at x = 150mm parallel to the yz plane is considered as presented in Fig. 10b.

Fig. 10. (a) Deflections v(x) for n = 2. (b) Shear stress τxy in the surface parallel to yz plane at
x = 150mm (ξ = x/L = 0.1) for n = 2

The results of the numerical study are further compared with the analytical solutions. It
should be noted that in the case of a three-dimensional finite element model, the shear stress τxy
varies along the width of the beam (Fig. 10b). To study the results, the mean of that function
along width is considered. The maximum deflection vmax in FEM analyses are taken from the
neutral surface for z = 0. To maintain consistency with the analytical study, the obtained results
are further considered in a dimensionless form, that is

vmax =
Efb

qL
vmax τmax =

b

q
τmax (4.1)

Exemplary distributions of shear stress along the depth of the beam described by the dimension-
less parameter η and corresponding dimensionless functions of Young’s modulus are presented
in Figs. 11a and 11b. These show a near-perfect agreement with the analytical outcomes shown
in Figs. 6a and 5b.
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Fig. 11. The graph of dimensionless functions of Young’s modulus variation and dimensionless shear
stress (a) for n = 7 and (b) for n→∞ from the numerical study

The numerically obtained maxima of shear stress τmax and deflections vmax for all the
values considered of the parameter n are summarised in Table 2 in a dimensionless form. When
comparing the dimensionless maximum shear stresses and deflections calculated analytically
and numerically (Tables 1 and 2), it is easy to notice that the differences between them are
insignificant, less than 0.1%.

Table 2. The maximum shear stresses and deflections – numerical FEM analysis

n
0 2 7 14 25 ∞

τmax 18.0023 15.1169 14.3331 14.0808 13.9379 13.5904
vmax 854.9 1261.0 1497.7 1605.6 1680.4 1956.9

5. Conclusions

Most of the papers investigating the problem of the shear effect in beams refer to numerical
methods or analytical studies, whereas the deformation function is assumed in advance within
the number of theories mentioned in the literature review. The choice of the deformation function
can have a direct effect on the accuracy of the solution. In the present paper, a linear theory with
the assumption of nonlinear shear deformation is developed and applied taking into account the
classical shear stress formula for beams. Unlike the number of theories and papers, the shear
deformation function is the result of an analytical solution, which leads to an exceptionally
coherent solution compared to the FEM study.
The generalised form of the function that describes Young’s modulus allowed us to analyse

beams with various mechanical properties, including homogeneous and layered beams within the
proposed theory. Using the principle of stationary potential energy, two differential equations of
equilibrium were derived and then solved. Relative deflections and shear stresses were calculated
for exemplary beams with different variations in Young’s modulus.
To verify the accuracy of the developed theory, the outcome of the analytical study was

compared with the results of numerical FEM analysis in the Ansys system. The beam was
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modelled as a three-layered structure, while its core had a variable Young’s modulus along its
depth.
Following the results in Figs. 6 and 12, both analytical and numerical analyses yielded

consistent shear stress distributions for all exemplary structures. Comparison of the maximum
relative deflection and maximum relative shear stress shown in Tables 1 and 2 shows a nearly
identical result from both methods. The relative differences between these are less than 0.1%,
proving that the theory developed is accurate. Having in mind the fact that it is suitable for
beams with different Young’s modulus distributions, i.e. homogenous and nonhomogeneous, it
can be applied to numerous practical analyses of composite structures.
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